PENERAPAN DATA MINING UNTUK PREDIKSI KELULUSAN MAHASISWA FAKULTAS TEKNIK INFORMATIKA UNIVERSITAS JABAL GHAFUR MENGGUNAKAN METODE K-NEAREST NEIGHBOR BERBASIS WEB

Shara Iradhia, Husaini Husaini, Laila Qadriah

Abstract


 

One of the instruments in campus accreditation, especially the faculty of informatics engineering at Jabal Ghafur University in order to get a good grade score is the satisfaction of graduate students getting decent jobs according to their fields, and is also a consideration during the study period for completing long lectures in a study program or faculty. The prediction of student graduation graduating on time or late does not only look at student data based on the highest scores as has been done in conventional grading systems so far. With advances in computer technology, especially in the field of data mining, it has brought many changes in the process of analyzing data patterns with data mining techniques, for example, in determining student graduation, a K-Nearest Neighbor method is used which processes data mining based on test data and sample data, especially on students. The results of the process for predicting student graduation are used sample data and training data. The sample data are students who are currently undergoing lectures and training data, namely students who have become alumni based on their graduation parameters. The final result obtained in the thesis research is that the system can input alternative data, criterion data, and process graduation predictions using the K-nearest neighbor method so that it can make a decision on whether the student who is being tested is "Passed" or "Graduated Late". The system can also display the K-nearest neighbor manual calculation flow and can display results reports.

Key Words : Datamining, K-nearest Neighbor, Student Graduation Prediction, , PHP&MySQL, Jabal Ghafur University


                                          


References


Andayati, 2020. Sistem Informasi Pengolahan Data Ikpm (Ikatan Keluarga Pelajar Mahasiswa) Muara Enim Berbasis Web Menggunakan Php Dan My Sql. Jurnal SCRIPT Vol. 2 No. 1

Bramer, 2017. Web Programming with PHP and MySQL. Portsmouth: Springer.

Ernie Kustanti, 2018. “Klasifikasi Siswa berdasarkan Nilai pada Bidang Ekstrakurikuler Menggunakan Metode K-Nearest Neighbor”, Journal of Big Data Analytic and Artificial Intelligence, Vol. 4, No. 1, Tahun 2018

Herdianto, 2018. Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation,Tesis,Universitas Sumatera Utara, Medan.

Husumardiana, 2018. Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbour, Techno.COM, Vol. 17, No. 4, November 2018 : 395-403JC.

Imelia Rosa Br Sinuhaji, 2018. “Implementasi Algoritma K-Nearest Neighbor Untuk Menentukan Mahasiswa Berprestasi Di Stmik Kristen Neumann Indonesia”, publikasi ilmiah teknologi informasi neumann (pitin) volume 3 nomor 2 november 2018

Kenneth, Kendal, 2010. Analisis Dan Perancangan Sistem, Indeks : Jakarta

Kusrini, & Luthfi, 2019. Prediksi Mahasiswa Drop Out Menggunakan Metode Support Vector. Prediksi Menggunakan SVM, 3(6), 82–93

Kusumadewi dan Purnomo, 2010. Pengantar Dasar Komputer, Wahana : Jakarta

Marimin, 2005. “Sistem Pakar Dan Sistem Pengambilan Keputusan”, Graha Ilmu : Jakarta.




DOI: https://doi.org/10.47647/jrr.v5i3.1516

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.